7 research outputs found

    Adult-type granulosa cell tumor of the ovary : a FOXL2-centric disease

    Get PDF
    Adult-type granulosa cell tumors (aGCTs) account for 90% of malignant ovarian sex cord-stromal tumors and 2-5% of all ovarian cancers. These tumors are usually diagnosed at an early stage and are treated with surgery. However, one-third of patients relapse between 4 and 8 years after initial diagnosis, and there are currently no effective treatments other than surgery for these relapsed patients. As the majority of aGCTs (>95%) harbor a somatic mutation in FOXL2 (c.C402G; p.C134W), the aim of this study was to identify genetic mutations besides FOXL2 C402G in aGCTs that could explain the clinical diversity of this disease. Whole-genome sequencing of 10 aGCTs and their matched normal blood was performed to identify somatic mutations. From this analysis, a custom amplicon-based panel was designed to sequence 39 genes of interest in a validation cohort of 83 aGCTs collected internationally. KMT2D inactivating mutations were present in 10 of 93 aGCTs (10.8%), and the frequency of these mutations was similar between primary and recurrent aGCTs. Inactivating mutations, including a splice site mutation in candidate tumor suppressor WNK2 and nonsense mutations in PIK3R1 and NLRC5, were identified at a low frequency in our cohort. Missense mutations were identified in cell cycle-related genes TP53, CDKN2D, and CDK1. From these data, we conclude that aGCTs are comparatively a homogeneous group of tumors that arise from a limited set of genetic events and are characterized by the FOXL2 C402G mutation. Secondary mutations occur in a subset of patients but do not explain the diverse clinical behavior of this disease. As the FOXL2 C402G mutation remains the main driver of this disease, progress in the development of therapeutics for aGCT would likely come from understanding the functional consequences of the FOXL2 C402G mutation.Peer reviewe

    FOXL2 in adult-type granulosa cell tumour of the ovary : oncogene or tumour suppressor gene?

    No full text
    A recurrent mutation in FOXL2 (c.402C>G; p.C134W) is present in over 95% of adult-type granulosa cell tumours (AGCTs). In contrast, various loss-of-function mutations in FOXL2 lead to the development of blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES). BPES is characterised by an eyelid malformation often accompanied with primary ovarian insufficiency. Two recent studies suggest that FOXL2 C402G is a gain- or change-of-function mutation with altered DNA-binding specificity. Another study proposes that FOXL2 C402G is selectively targeted for degradation, inducing somatic haploinsufficiency, suggesting its role as a tumour suppressor. The latter study relies on data indicative of an FOXL2 allelic imbalance in AGCTs. Here we present RNA-seq data as genetic evidence that no real allelic imbalance is observed at the transcriptomic level in AGCTs. Additionally, there is no loss of protein expression in tumours harbouring the mutated allele. These data and other features of this mutation compared to other oncogenes and tumour suppressor genes argue strongly against FOXL2 being a tumour suppressor in this context. Given the likelihood that FOXL2 C402G is oncogenic, targeting the variant protein or its downstream consequences is the most viable path forward to identifying an effective treatment for this cancer. (c) 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.Peer reviewe
    corecore